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Power and Energy Lab.

T.U.M.S.A.T. Radiation-induced surface activation 
(RISA) 
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Assumed mechanism behind RISA

Catholic and anodic reactions 
by surface irradiation of 
oxidized metal with 
radioactive rays.

Activating the surface and 
increasing surface wettability 

Improving heat transfer

Thermal Science & Engineering 
Vol.12, No.2,  (2004).

RISA reaction 
→Corrosion control

Radiation measurement
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T.U.M.S.A.T. UV Light Catalyst (Fujishima, 1980)

TiO2 representative n-type semiconductor, is 
excited by photon irradiation and generates 
anodic current.

Photon energies which can excite the 
electron in the valence electron band :

･Rutile type TiO2: <420nm (Eg=3.0eV)

･Anatase type TiO2: <390nm (Eg=3.2eV)

This reaction decomposes organic 
substance by its strong oxidizing power and 
commonly used in environmental 
purification as anti bacterial, antipollution 
and deodorant material. 
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Electrochemical reaction on the 
material surface with TiO2 under 
ultraviolet (UV) irradiation.
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T.U.M.S.A.T. Superhydrophilicity

When the surface coated with TiO2 is irradiated by UV light, the 
contact angle for water decreases with the irradiation and finally 
reaches almost zero.  (Fujishima, A., et al., Nature, (1997))

TiO2-coated glass : exposed to water steam, the droplets on the 
surface form very thin film and the glass becomes transparent.

The self-cleaning effect : remove oil materials from the surface 
because the TiO2-coated surface has greater affinity for water than 
oil. 

the anti-fogging side-mirror film, coating of automobiles and 
various materials that can be self-cleaned by rainfall.                               



4
Power and Energy Lab.

T.U.M.S.A.T. Thermohydoulic Application

Improvement of the critical heat flux (CHF) requires that 
the cooling liquid can contact the heating surface, or a high-
wettability, highly hydrophilic heating surface, even if a 
vapor bubble layer is generated on the surface.

Boiling and quenching with a superhydrophilic surfaceBoiling and quenching with a superhydrophilic surface

(1)  The critical heat flux (CHF) of TiO2-coated surface is 
about two times larger than that of a non-coated one. 

(2)  The minimum heat flux (MHF) temperature for a TiO2-
coated surface is much higher than that of non-coated 
one in a quenching experiment.

Takata, Y., et al., Thermal Science & Engineering, (2000)

Possibility of application of UV catalysis to improve heat transfer incidents
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T.U.M.S.A.T. Difficulties of UV Light Catalyst in Actual 
Heat transfer Applications

1. Need a light source and a transparent wall

2. Only TiO2 –can be used

3. Unstable surface – cannot be used over a long period

Conventional oxide matels, Zircaloy, SUS ?
To solve these problems why don’t we use γ-ray irradiation ?

> Very low efficiency for surface activity
> discrepancy between its wave energy and the valence electron band

for TiO2 and other metal oxides

First RISA study (1999-2002) 
Takamasa, Hazuku, Mishima, Okamoto
First RISA study (1999-2002) 
Takamasa, Hazuku, Mishima, Okamoto

1. Improvement of surface wettability by use of an oxide-
coated material under a radiation environment. 

2. Improvement of thermodynamic properties. 
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T.U.M.S.A.T. 1) Surface Wettability 
in Room-Temperature (2000)

Two 60Co γ-ray facilities at the University of Tokyo and Kyoto 
University (Radiation ray intensity: 0.1 – 20 kGy/hr)
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T.U.M.S.A.T. Apparatus 

30

（30×30×3 mm）

3030

（30×30×3 mm）

Cold lightMicro syringe

Digital video

CCD camera

Table

Experimental apparatus for contact angle 
measurement Test pieces

Titanium, Stainless, Zircaloy, and Copper
(Oxidized by plasma jet) 

Thermal Science & Engineering 
Vol.12, No.2,  (2004).
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T.U.M.S.A.T.

Contact Angle : 47.7° Contact Angle : 10.5°

θ

2r

hα γ

β

θ1

θ

Before irradiation After irradiation

Titanium

Zircaloy No. 4

Hydrophilic condition changes resulting 
from γ-ray irradiation (after 250kGy 
integrated irradiation)

Aluminum
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T.U.M.S.A.T.

Change of contact angle by γ-ray irradiation Dimensionless contact angle of test pieces
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Changes of contact angle 
by γ-ray irradiation

Radiation Induced Surface Activation (RISA) exists when 
γ-rays irradiate the surface of metal oxides.
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T.U.M.S.A.T.
Cyclic change of contact angle 
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T.U.M.S.A.T. 2) Heat Transfer experiment
a. Experiment to Investigate Leidenfrost

Temperature (2002)
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Apparatus for Leidenfrost temperature measurement
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T.U.M.S.A.T. Droplet Behavior near Leidenfrost
Condition

Titanium (300℃)
Before γ-ray irradiation After 260KGy γ -ray irradiation

Over wetting limit temperature Under wetting limit temperature

Leidenfrost condition from the observation of wetting limit temperature. 

Wetting limit temperature was defined as the maximum temperature of 
heating surface when splashed droplets contact again with heating surface.
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　Takata et al., (1999)
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T.U.M.S.A.T. Droplet Behavior near Leidenfrost 
Condition　　

59 ms 63 ms 67 ms 71 ms 75 ms
2 mm

Before 
irradiation
Over
wetting  limit
temperature

　

Behavior of droplet on heated TiO2 plate 
(droplet diameter: 2.7 mm, temperature of Pb-Bi pot: 320 ℃)

After 260kGy 
irradiation
Under
wetting limit 
temperature
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T.U.M.S.A.T. Wetting Limit Temperature

Effect of integrated irradiation dose 
on wetting limit temperature (19.5 
kGy/hr)

The wetting limit temperature 
against contact angle
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T.U.M.S.A.T. b. Quenching Experiment　　
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Thermal Science & Engineering 
Vol.12, No.2,  (2004).
Takamasa, Mishima, et al
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T.U.M.S.A.T. Rod Surface Wettability Change due to 
γ-ray Irradiation

　

　

　

･ Profile of integrated-irradiation 
dose on the rod forms centered 
peaked along the rod axis.

･Superhydrophilic condition of 
oxidized metal surface can be 
achieved after integrated 
irradiation dose of 300-500 kGy,  
located at the rod center, z = 248
mm (TC4) and 285 mm (TC5).

･Surface wettability of rod end is 
consistent before and after 
irradiation.

Contact condition of a water droplet on 
stainless rod before and after γ-ray irradiation
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T.U.M.S.A.T. Typical Result of the Surface 
Temperature Record　　　　　

　

　

　

･ No discrepancy exists in 
temperature records between 
before and after irradiation at 
TC1 and TC2 where no changed 
wettability was observed. 

　⇒　Reproducibility of the test

･Large increased quenching 
velocity, 7.1 mm/s, was 
observed at the middle elevation 
of rod (TC3 and TC4) after γ-ray 
irradiation.

･The quenching velocities were 
increased up to 20-30 % after 
300kGy 60Co γ-ray irradiation.
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T.U.M.S.A.T.
c. CHF Measurement

60
60

3
0.

2
0.

8

V

V

A

Test piece
Thermocouple

Reference 
resistance

CHF experiment: the pool boiling condition
The pressure: atmospheric pressure

(resulting in the boiling point to be 100 degree C)
The heating: conducted using the Joule heating by DC supply
The test piece: hold horizontally on the electrode

To generate the oxidized surface, the test pieces were 
oxidized using plasma jetting for 40 seconds.
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T.U.M.S.A.T. Radiation Induced Boiling Enhancement

Improvement of CHF by γ-ray irradiation (TiO2)

CHF:

improved as much as 
100 ％ after 800-kGy 60Co 
gamma-ray irradiation.
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T.U.M.S.A.T. Nucleate boiling under irradiation

Boiling curve shifts to high-wall-temperature with increasing 
gamma-ray dose.
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T.U.M.S.A.T.
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Boiling curve of oxide titanium wire 
against temperature

The CHF of the oxidized 
titanium wire is higher than 
that of non-oxidized one. 

The boiling curves also move 
to lower temperature side.
The oxidized layer does not 

play the thermal resistance. 

The CHF of irradiated wire is 
higher than that of non-
irradiated wire. 

The irradiated titanium wire 
can reach higher temperature 
at the boiling transition. 
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T.U.M.S.A.T. Relationship between wettability and CHF

　

CHF in the present experiment 
increases with surface 
wettability in the same manner 
as shown by Liaw and Dhir’s
results.

( ) 1 42
max v fg l v vK q h gρ σ ρ ρ ρ = − 

K is defined by the following 
equation from the interfacial 
stability analysis conducted by 
Zuber.

　Contact angle and CHF
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T.U.M.S.A.T. Surface wettability in high temperature
and high pressure condition

Takamasa. et al.
(2004-2006)

corroborated with 
Prof. K. Vierow, 
Mr. A. Pollman

Contact angles of 
water droplets using 
a pressure vessel at 
temperatures from 
20 to 300oC and at a 
constant pressure of 
15 MPa

CCD camera

Water droplet supply unit

Digital video
recorder

Check valve

Pressure gauge

Syringe
Viewing window

Test piece

Drain

Pump

M

Controller

Waterreservoir

N2, Ar tank
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Plate
light

Light
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Pressure
vessel

valveControl

RR R
Regulator

N2 tank
Heater

RR

Thermostat

---℃

---MPa

Degassing Tank

(ID=50 mm, h=150 mm, t =40 mm)
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T.U.M.S.A.T. Contact angle in high temperature
condition

At temperatures above 250oC, contact angles remained 
constant independent of temperature, and contrary to the 
existing theoretical results, no highly hydrophilic condition 
or null contact angle condition was achieved.
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T.U.M.S.A.T. Leidenfrost condition 
in high temperature  condition
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　By utilizing a pressure vessel, Leidenfrost
conditions of water droplets were measured 
up to 2.1 MPa of ambient pressure.  The 
results revealed that the wetting limit 
temperature increased with the ambient 
pressure. The theoretical equations 
regarding to the wall temperature at onset 
of liquid contact in pool boiling predicted 
well the present results.

Effect of RISA
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T.U.M.S.A.T. d. JMTR Experiments for CHF/RISA

Japan Materials Testing Reactor (JMTR)
JAEA

Reactor type : Light water moderation 
Thermal power : 50 MW
Primary coolant

Inlet temp. : 322 K
Outlet temp. : 329 K
Flow rate : 6000 m3/h
Pressure : 1.5 MPa

Neutron flux : max.; 4.0x1018/m2/s
RISA exp.; 1.0x1017/m2/s

primary coolant
outlet pipe

primary coolant
inlet pipe

capsule

An outermost irradiation hole will 
be used in the core to minimize 
gamma-ray heating ratio. 

Absorbed dose is 100 times larger 
than that in the previous 
experiments.

core



27
Power and Energy Lab.

T.U.M.S.A.T. Experimental Conditions

Gamma ray dose rate -- 540kGy/h
Integrated gamma irradiation -- 100MGy

炉心

HTR-4

Heater
HTR-3

Core

Connection Unit

Heater
HTR-4

HTR-3

Water Furnish
& Exit

Test Section 
Inside

Capsule

Capsule and Irradiation Setups

Reactor 
Vessel

Tube

Forced-convection boiling heat 
transfer (upward flow)

Test Channel : tube  (i.d. 2 mm, 
heated length 100 mm, in SUS 
cylinder)

Pressure : typically 1.5MPa   (BWR --
7 MPa)

Flow Rate : 180 to 630 kg/(m2s) 
(BWR -- 1,500 kg/(m2s) )

Inlet Subcooling : 35 to 120 K
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T.U.M.S.A.T. CHF results

CHF increased by 13% due 
to irradiation in JMTR

CHF appeared at high 
quality conditions

CHF mechanism would be 
dryout-type similar to that 
in BWR core
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T.U.M.S.A.T. RISA mechanism

Metal 
oxide film

Base metal

Diffusion

Irradiation of radioactive rays

Radiation induced currencyRadiation induced currency

Electronic structure?
Surface activities?
Electronic structure?
Surface activities?

Primary difference 
between Radiation 
Induced Currency (RIC)
and radiation induced 
conductivity?

Generation and 
diffusion of the electric 
carrier?

Distribution and density 
of surface electric 
charge?

Distribution and density 
of surface electric 
charge?

Cause of wettability improvement?Cause of wettability improvement?

Generation of 
electron or hole

Improvement of 
surface wettability
Improvement of 
surface wettability
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T.U.M.S.A.T. Analysis by AFM (Atomic Force 
Microscope) and FFM (Friction FM)

●White spots corresponds to high friction force are observed in 
the sample after gamma ray irradiation.

FFM imageAFM image

Substrate; Zircaloy-4
Oxide layer; by autoclave
Irradiation; No irradiation
Measurement; at r.t. in air
Contact angle; 77 deg.

White spots 
are observedSubstrate; Zircaloy-4

Oxide layer; by autoclave
Irradiation; 340 kGy
Measurement; at r.t. in air
Contact angle; 12 deg.
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T.U.M.S.A.T. Wettability of ZrO2 surface at AFM scale

RISA-induced 
hydrophilic 

AFM tip

ZrO2 thin film

Force curve

matrix   water?

adhesive force

differential

hydrophilic domains?
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T.U.M.S.A.T.
Analysis by AFM

● Surface friction force of the Zircaloy samples increases by 
gamma ray irradiation.

Width between upper line and lower line 
corresponds to magnitude of surface friction force.

Substrate; SUS304
Oxide layer; heated in air
Irradiation; No irradiation
Measurement; at r.t. in air
Contact angle; 39 deg.

Substrate; Zircaloy-4
Oxide layer; by autoclave
Irradiation; No irradiation
Measurement; at r.t. in air
Contact angle; 77 deg.

Substrate; SUS304
Oxide layer; heated in air
Irradiation; No irradiation
Measurement; at r.t. in air
Contact angle; 95 deg.

Substrate; Zircaloy-4
Oxide layer; by autoclave
Irradiation; 340 kGy
Measurement; at r.t. in air
Contact angle; 12 deg.
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T.U.M.S.A.T. Surface Wettability

●Hydrophilicity rate depends heavily on the integrated 
irradiation dose, and effect of irradiation intensity is small.

●Ｉt is assumed that the existence of water content both in 
air and on the surface of the oxide layer plays an important 
role for the hydrophilicity phenomenon.

●The contact angle for water increases gradually after the 
irradiation when sample is preserved in air, whereas the 
contact angle of the same sample preserved in water stays 
unchanged, and high hydrophilicity is maintained at least 
for 2,040 hours.

●It is assumed that the appearance of hydrophilicity by 
the dosage of gamma ray irradiation is related to the 
increase of the surface friction force. 
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T.U.M.S.A.T. Expected Applications of RISA 

Improvement of heat transfer properties of nuclear reactors:

Nuclear reactors are designed and assessed by thermohydraulic 
data obtained from electric heater experiments. Nobody has paid 
attention the relationship between radiation in nuclear reactor and 
thermohydraulic incidents, boiling, critical heat flux, Leidenfrost
temperature, rewetting and so on. 

･High heat flux can be achieved by application of the oxide 
material (Zircaloy, Stainless) to fuel clad in a reactor, which makes 
possible reductions in both weight and size of the reactor vessel. 

･In the event of an accident, rapid reactor cooling can be achieved 
through use of the material for the internal structure of the reactor. 
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T.U.M.S.A.T.
Expected Applications of RISA 

Use of the electrical and chemical reactions caused by RISA 
is expected to offer many applications in nuclear reactor.

The RISA current induced in Oxide metal film: Radiation 
Detection, Corrosion Protection, Hydrogen Gas Production, Self 
Cleaning, etc.

Hopefully research on this new technology may be 
conducted more widely in the near future, shedding light on 
the radiation effect in nuclear reactor.

Thank you.
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